Update on the Current Mercury RfD & the Implications for Revisions Based on Recent Data

Alan H. Stern, Dr. P.H., DABT
Division of Science, Research and
Technology
New Jersey Dept. Environmental
Protection

Cardiovascular Endpoint

- Effects associated specifically with MeHg
 - some health effects currently associated only with inorganic Hg
 - e.g., cardiomyopathy
 - not known to what extent inorg. and
 MeHg share common mode of action for cardiovascular effects

Heart Disease

- including AMI, MI, CHD, ischemic heart disease
- Salonen et al. (1995)
 - Finland 1833 middle-aged men in health registry
 - mean fish intake = 46.5 g/day
 -90th percentile of U.S. consumers
 - mean Hg hair = 1.92 ppm
 - -~ 90th percentile of U.S. males
 - hair Hg = 2 ppm, or \$30 g fish/day -RR = 1.7 for AMI, (p = 0.038)
 - Hair Hg assoc. with immune complexes with oxidized LDL

- Follow up of Finnish cohort additional 4 years (Rissanen, 2000)
 - prospective measurement of fish n-3 fatty acids
 - upper quintile of n-3 fatty acids AND hair
 Hg < 2 ppm → 52% reduction in risk
 - upper quintile n-3 fatty acids AND Hg > 2
 ppm → 24% reduction in risk
 - Hg > 2 ppm reduced protective effect of n-3's by \sim 50 %
 - implies balance between protection of n-3's and adverse effects of MeHg

- Multi-center study (Europe and Israel) (Guallar et al. 2002)
 - men #70 yrs.
 - case control first AMI
 - DHA (n-3 fatty acid)
 - toenail Hg
 - interpretation of exposure?
 - with full model adjustment, (including n-3's)
 OR for AMI in highest quintile Hg was 2.2
 times OR in lowest quintile
 - monotonic positive dose-response
 - dose response modeling for DHA gave monotonic negative trend
 - Consistent with Hg antagonism of n-3 protection

- U.S. health care professionals study (Yoshizawa et al. (2002)
 - case-control study of coronary heart disease
 - middle-aged men
 - toenial Hg
 - Hg conc. larger than largest group in Guallar et al.
 - n-3 fatty acids
 - dentists were largest group
 - 63% of controls
 - Hg exposure > twice that of other groups
 - occupational exposure to Hg⁰?

• toenail Hg not associated with risk of CHD

- for total cases
- with dentists excluded OR = 1.3-1.7
 - higher OR with adjustment for n-3's
 - not significant small n
- does putative association result from total Hg or MeHg?
 - if MeHg, then inclusion of dentists is a confounder
- potential exposure misclassification
 - toenail samples collected up to 5 yrs. prior to
 CHD event

• Minamata

- preliminary ecological study comparing causes of death in two heavily exposed districts of Minamata to Minamata City as a whole (Tamashiro et al., 1988)
- diseases of the heart were not elevated
 - period of analysis was approx 20 years after initial disease report
 - peak period for heart disease my not have been included
 - MeHg exposure in control area not documented
- case-control study in Kumamoto prefecture
 - causes of death secondary to Minamata disease analyzed

- OR not significant for any cause
 - ischemic heart disease OR = 1.3 males 0.65 females
 - other heart disease OR = 1.3 males 2.0 females
 - only ischemic heart disease sig. associated with Minamata disease on death certificates

• Atherosclerosis

- Salonen et al. (2000) measured progression in men from E. Finland
 - ultrasound measurement of thickness of carotid artery
 - two measurements 4 yrs. apart
- hair Hg
 - upper quintile = 2.81 ppm
- multivariate regression model
 - Hg highly significant
 - beta for Hg second only to systolic BP
 - 7.3% increase in progressive thickening for each ppm Hg in hair

• Blood pressure and heart rate – *in utero* exposure

- Some evidence for association of *in utero* MeHg exposure (cord blood Hg) and BP at 7 yrs. (Faroese cohort, Sørensen et al., 1999)
 - systolic and diastolic
 - dose response plateaus at low exposures (10 ug/l)
- Also decrease in heart rate *variability*
- Inconsistent with findings in institutionalized patients with "fetal Minamata disease" (Oka et al., 2003)
- Animal studies examined adolescents and adults
 - some associations, but generally high dose effects with frank neurological toxicity

Summary of Cardiovascular Effects

- Epidemiological studies suggest an association between heart disease (including but not limited to AMI) and MeHg
- Causal mechanism suggested by apparent antagonism between n-3 fatty acids and MeHg
 - anti-oxidant properties of n-3's and lipid peroxidation stress from MeHg?
 - different levels of n-3's and MeHg by species may explain differences among studies of potential cardiovascular benefits of fish consumption
 - risks from MeHg may not be straightforward, but would be expected to be mediated by n-3 exposure

- association between atherosclerosis and MeHg seen only in single study
 - mechanism may be consistent with lipid peroxidation by MeHg
- Salonen et al., 1995, and Guallar et al. (2002) may lend themselves to dose-response modeling
 - lack of information about toenail Hg as a biomarker makes Guallar study less useful
- Evidence for effects of MeHg on BP at current levels of exposure is weaker
 - no epi. studies in adults
 - animal data difficult to interpret given multiple toxicities
 - in utero BP effects are unclear with respect to persistence and long-term implications
 - of concern

Reassessment of the pharmacokinetic model for dose reconstruction

Pharmacokinetic Pathway for Fetal Exposure to MeHg

One Compartment Pharmacokinetic Model (for blood)

$$D = \frac{Cc \times R \times b \times V}{(A \times F)}$$

Pharmacokinetic Variability in Pathway

based on one-compartment model (Stern, 1997)

 Previous analyses have produced consistent estimates of population variability in the dose reconstruction

Estimate of Pharmacokinetic Variability

Dose-Blood

from 3 studies

	50 th percentile/ 5 th percentile (95% of var.)	50 th percentile/ 1 st percentile (99% of var.)
Stern (1997)	mean = 1.8	mean = 2.4
Swartout and Rice (2000)	2.1	2.8
Clewell et al. (1999)	1.4	1.7

- However, previous analyses were inconsistent in absolute values predicted for the dose
 - this was largely a function of differences in central tendency estimates
 - selection of appropriate data sets and central tendency estimates was uncertain
 - analyses differed with respect to the specificity of the parameter values to pregnancy and stage of pregnancy
- Also, previous analysis implicitly assumed that $Hg_{cord}/Hg_{maternal} = 1.0$

- Current re-analysis is largely third-trimesterspecific
 - reflecting pharmacokinetic factors which influence Hg conc. in cord blood
- Current re-analysis incorporates the Hg _{cord} /Hg _{maternal} ratio

- W data on maternal weight at delivery
 - correlated with V
- V data on third-trimester total blood volume
- b data on elimination rate (T ½) from pregnant women in Iraqi poisoning
- F not pregnancy specific
 - however, may not significantly change during pregnancy
 - uncertain parameter
- A not pregnancy specific
 - unlikely to vary much with pregnancy
- R delivery-specific
 - well documented

Preliminary results of revised dose reconstruction Maternal dose (ug/kg/day) corresponding to 58 ug/l in cord blood			
		current EPA value	
mean	1.03	1.08	
s.d.	0.73		
1 st percentile	0.21		
5 th percentile	0.31		
10th percentile	0.39		
50 th percentile	0.84		
50th percentile/5th percent	ile 2.7		

- Thus, on the basis of the preliminary analysis:
 - the estimate of the mean maternal dose is about the same as EPA's previous estimate
 - the overall variability in the dose reconstruction is approximately 33% larger than the EPA assumed value
 - appears to be due largely to the variability in the cord/maternal ratio

- If a UF approach is used to address pharmacokinetic variability, the preliminary analysis suggests that a UF of approx. 4 may be justified
 - 99% of population variability
- However, the third-trimester specificity of the analysis suggests that 99th percentile estimate can be used directly in the RfD calculation
 - 58 ug/l . 0.21 ug/kg/day
- If a UF (toxicodynamic factors, database insufficiency etc.) of 3 is then applied, overall RfD could be
 - 0.21 ug/kg/day/3 = 0.07 ug/kg/day